Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Le sinapsi sono sempre pronte ai blocchi di partenza

Come funziona: le sinapsi sono sempre pronte ai blocchi di partenzaRicostruzione tridimensionale di una sinapsi. Le vescicole sinaptiche fusibili prontamente rilasciabili (blu, circa 45 milionesimi di millimetro di diametro) sono ancorate alla membrana cellulare. (Fonte: © MPI f. Experimental Medicine/ Benjamin H. Cooper)Quando i neuroni propagano rapidamente le informazioni al loro interno tramite segnali elettrici, essi comunicano tra loro in speciali punti di contatto chiamati sinapsi. Delle sostanze chimiche messaggere, i neurotrasmettitori, sono conservati in vescicole nelle sinapsi.


Quando una sinapsi si attiva, alcune di queste vescicole si fondono con la membrana cellulare e rilasciano il loro contenuto. Per garantire di non perdere del tempo prezioso, le sinapsi hanno sempre alcune vescicole facilmente sganciabili in attesa.


Con l'aiuto del microscopio elettronico a tre dimensioni e ad alta risoluzione, gli scienziati del Max Planck Institute di Medicina Sperimentale di Göttingen sono riusciti a dimostrare che queste vescicole fondibili hanno una caratteristica molto particolare: hanno già preso contatto con la membrana cellulare molto prima che avvenga la fusione effettiva.


Inoltre, il gruppo di ricerca ha anche decodificato il meccanismo molecolare che facilita il funzionamento di questo sistema di aggancio.


La fusione delle vescicole neurotrasmettitrici con la membrana cellulare comporta una stretta collaborazione tra numerosi componenti proteici, che si controllano a vicenda e garantiscono che ogni singolo «partecipante» sia sempre nel posto giusto. Questo è chiamato «macchina di fusione» e un confronto adeguato è questo: se una ruota dentata nel meccanismo dell'orologio si rompe, le lancette non si muovono. In modo simile, le molecole difettose o mancanti compromettono le operazioni sinaptiche.


Negli studi di ricerca condotti qualche anno fa, Nils Brose e il suo collega JeongSeop Rhee dell'Istituto Max Planck di Göttingen avevano già dimostrato che è gravemente difettosa la trasmissione di informazioni nelle sinapsi nei topi geneticamente modificati, in cui tutti i geni conosciuti delle proteine Munc13 o CAPS ​​erano stati spenti. Sebbene i neuroni dei topi geneticamente modificati non differiscano da quelli dei topi sani quando sono esaminati al microscopio ottico, se manca la Munc13 si arresta completamente il rilascio dei neurotrasmettitori. Le scoperte di Brose e Rhee hanno dimostrato che, per essere in grado di reagire immediatamente ai segnali in ogni momento, ogni sinapsi deve mantenere un piccolo numero di vescicole da fusione 'facilmente rilasciabili' in stand-by.


Ma come fanno le Munc13 e CAPS a convertire le vescicole in questo tipo di stato fondibile? Per rispondere a questa domanda, gli scienziati di Göttingen hanno studiato i contatti sinaptici nel dettaglio più minuto possibile. Per fare questo, i neurobiologi Cordelia Imig e Ben Cooper, che hanno lavorato con Brose e Rhee per molti anni, hanno usato un processo di congelamento ad alta pressione. Ciò comporta il congelamento rapido dei neuroni nel tessuto cerebrale ad alta pressione in modo che non si formi alcun cristallo di ghiaccio distruttivo e che resti particolarmente ben conservata la fine struttura delle cellule.


I campioni così ottenuti sono stati poi analizzati con la tomografia elettronica, una tecnica per cui le immagini di una struttura sono registrate da diverse angolazioni, come nella tomografia computerizzata in medicina. Le singole immagini possono poi essere combinate dal computer per dare un immagine ad alta risoluzione tridimensionale, di una sinapsi in questo caso (vedi immagine).


"Le nostre scoperte dimostrano che le vescicole facilmente rilasciabili nelle sinapsi sane toccano la membrana cellulare", spiega Cooper. "Tuttavia, se mancano le proteine Munc13 e CAPS​​, le vescicole non raggiungono la zona attiva e si accumulano a pochi nanometri di distanza". Con loro stupore, i ricercatori hanno osservato che anche le proteine ​​SNARE, che collaborano con le Munc13 e CAPS nelle terminazioni nervose, sono coinvolte in questo processo di espansione.


Le proteine ​​SNARE sono presenti nelle membrane cellulari e delle vescicole delle sinapsi sane e controllano la fusione delle due membrane durante il rilascio dei neurotrasmettitori. Quando una vescicola si avvicina alla membrana cellulare, le singole molecole SNARE si allineano una di fronte all'altra come i lati di una cerniera e tirano le membrane vicine tra loro in questo modo. Le vescicole attendono il segnale della pistola di partenza per fondersi in questo stato: ai blocchi di partenza, per così dire.


I risultati dei neurobiologi di Göttingen dimostrano che le proteine Munc13, CAPS e ​​SNARE allineano strettamente la vescicola e la membrana cellulare nella sinapsi, molto prima che sia dato il segnale per la fusione. Questo è l'unico modo che garantisce la trasmissione veloce e controllata delle informazioni alla sinapsi, grazie alla quale possiamo reagire specificatamente alle informazioni del nostro ambiente.


"Era evidente da tempo che le sinapsi devono essere estremamente veloci per effettuare tutte le numerose funzioni cerebrali complesse. Il nostro studio dimostra per la prima volta come questo viene gestito a livello molecolare e al livello delle vescicole sinaptiche", dice Brose.


Poiché quasi tutti i componenti proteici ​​coinvolti in questo processo hanno anche un ruolo nelle malattie neurologiche e psichiatriche, gli scienziati di Göttingen credono che la loro scoperta darà presto benefici alla ricerca medica.

 

 

 

 

 


FonteMax-Planck-Gesellschaft  (> English text) - Traduzione di Franco Pellizzari.

Riferimenti:  Cordelia Imig, Sang-Won Min, Stefanie Krinner, Marife Arancillo, Christian Rosenmund, Thomas C. Südhof, JeongSeop Rhee, Nils Brose, Benjamin H. Cooper. The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones. Neuron, 2014; 84 (2): 416 DOI: 10.1016/j.neuron.2014.10.009

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.

Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra:

 


 

 

Notizie da non perdere

Convalidare il sentimento aiuta meglio di criticare o sminuire

30.03.2020 | Ricerche

Sostenere i tuoi amici e la famiglia può aiutarli a superare questi tempi di incertezza...

Demenze: forti differenze regionali nell’assistenza, al Nord test diagnostici …

30.01.2024 | Annunci & info

In Iss il Convegno finale del Fondo per l’Alzheimer e le Demenze, presentate le prime linee guida...

4 Benefici segreti di un minuto di esercizio al giorno

29.12.2020 | Esperienze & Opinioni

Conosci tutti gli effetti positivi dell'esercizio fisico sul tuo corpo e sulla tua mente...

Livelli di ossigeno nel sangue potrebbero spiegare perché la perdita di memori…

9.06.2021 | Ricerche

Per la prima volta al mondo, scienziati dell'Università del Sussex hanno registrato i li...

Microglia: ‘cellule immunitarie’ che proteggono il cervello dalle malattie, ma…

28.05.2020 | Esperienze & Opinioni

Sappiamo che il sistema immunitario del corpo è importante per tenere tutto sotto controllo e per...

Un segnale precoce di Alzheimer potrebbe salvarti la mente

9.01.2018 | Esperienze & Opinioni

L'Alzheimer è una malattia che ruba più dei tuoi ricordi ... ruba la tua capacità di ese...

Molecola 'anticongelante' può impedire all'amiloide di formare …

27.06.2018 | Ricerche

La chiave per migliorare i trattamenti per le lesioni e le malattie cerebrali può essere nelle mo...

Paesi asiatici assistono gli anziani in modo diverso: ecco cosa possiamo impar…

28.10.2020 | Esperienze & Opinioni

A differenza dei paesi occidentali, le culture tradizionali asiatiche mettono un forte a...

Per capire l'Alzheimer, ricercatori di Yale si rivolgono alla guaina di m…

4.07.2025 | Ricerche

L'interruzione degli assoni, la parte simile a una coda nelle cellule nervose che trasme...

Nessuna cura per l'Alzheimer nel corso della mia vita

26.04.2019 | Esperienze & Opinioni

La Biogen ha annunciato di recente che sta abbandonando l'aducanumab, il suo farmaco in ...

Riprogrammare «cellule di supporto» in neuroni per riparare il cervello adulto…

21.11.2014 | Ricerche

La porzione del cervello adulto responsabile del pensiero complesso, la corteccia cerebrale, non ...

Studio rivela dove vengono memorizzati i frammenti di memoria

22.07.2022 | Ricerche

Un momento indimenticabile in un ristorante può non essere esclusivamente il cibo. Gli o...

Scienziati dicono che si possono recuperare i 'ricordi persi' per l…

4.08.2017 | Ricerche

Dei ricordi dimenticati sono stati risvegliati nei topi con Alzheimer, suggerendo che la...

Rete nascosta di enzimi responsabile della perdita di sinapsi nell'Alzhei…

8.12.2020 | Ricerche

Un nuovo studio sul morbo di Alzheimer (MA) eseguito da scienziati dello Scripps Researc...

Scoperta nuova causa di Alzheimer e di demenza vascolare

21.09.2023 | Ricerche

Uno studio evidenzia la degenerazione delle microglia nel cervello causata dalla tossicità del ferro...

Infezione cerebrale da funghi produce cambiamenti simili all'Alzheimer

26.10.2023 | Ricerche

Ricerche precedenti hanno implicato i funghi in condizioni neurodegenerative croniche co...

LATE: demenza con sintomi simili all'Alzheimer ma con cause diverse

3.05.2019 | Ricerche

È stato definito un disturbo cerebrale che imita i sintomi del morbo di Alzheimer (MA), ...

Perché dimentichiamo? Nuova teoria propone che 'dimenticare' è in re…

17.01.2022 | Ricerche

Mentre viviamo creiamo innumerevoli ricordi, ma molti di questi li dimentichiamo. Come m...

Con l'età cala drasticamente la capacità del cervello di eliminare le pro…

31.07.2015 | Ricerche

Il fattore di rischio più grande per l'Alzheimer è l'avanzare degli anni. Dopo i 65, il rischio r...

10 cose da non fare con i malati di Alzheimer

10.12.2015 | Esperienze & Opinioni

Mio padre aveva l'Alzheimer.

Vederlo svanire è stata una delle esperienze più difficili d...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

Seguici su

 
enfrdeites

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.