Iscriviti alla newsletter

Nuova teoria sulla formazione delle sinapsi nel cervello

Riorganizzazione della corteccia visiva: prima (a sinistra) e subito dopo un danno alla retina (al centro), e in una fase successiva (a destra).Riorganizzazione della corteccia visiva: prima (a sinistra) e subito dopo un danno alla retina (al centro), e in una fase successiva (a destra). La maggior parte dei neuroni nella zona in cui le immagini vengono proiettate dalla retina danneggiata può raggiungere di nuovo il livello di attività originale grazie alle nuove connessioni formate con le cellule vicine. I colori nella parte inferiore dell'immagine indicano i punti sulla retina da cui viene ricevuto lo stimolo a cui i neuroni mostrano la reazione più forte. (Fonte: PLoS Computational Biology)Il cervello umano continua a cambiare per tutta la vita di una persona. Vengono creati continuamente nuovi collegamenti, mentre le sinapsi che non sono più usate degenerano.


Finora si sapeva poco dei meccanismi alla base di questi processi. Il Dr. Markus Butz, neuroinformatico del Jülich, è riuscito ora ad attribuire la formazione di nuove reti neurali nella corteccia visiva ad una semplice regola omeostatica [il raggiungimento di una condizione di stabilità relativa] che è anche la base di molti altri processi di autoregolazione in natura.


Con questa spiegazione, lui e il suo collega Dr. Arjen van Ooyen da Amsterdam, delineano anche una nuova teoria sulla plasticità del cervello, ed un nuovo approccio per capire i processi di apprendimento e trattare le lesioni e le malattie cerebrali.


Il cervello degli esseri umani adulti non é per niente cablato in modo fisso. Gli scienziati hanno ripetutamente stabilito questo fatto nel corso degli ultimi anni, con diverse tecniche di scansione. Questa cosiddetta neuroplasticità non solo ha un ruolo cruciale nei processi di apprendimento, ma consente anche al cervello di recuperare dagli infortuni e di compensare la perdita di funzioni.


I ricercatori hanno scoperto solo di recente che anche nel cervello adulto, non solo le sinapsi esistenti si adattano alle nuove circostanze, ma sono costantemente prodotte e riorganizzate nuove connessioni. Tuttavia, non si sapeva ancora come sono controllati nel cervello questi processi di riarrangiamento naturali. Nella rivista ad accesso libero PLoS Computational Biology, Butz e van Ooyen ora presentano una regola semplice che spiega come si formano queste nuove reti di neuroni.


"E' molto probabile che sia la plasticità strutturale del cervello la base per la formazione della memoria a lungo termine", afferma Markus Butz, che ha lavorato nei mesi scorsi nel Simulation Laboratory Neuroscience di recente costituzione, al Jülich Supercomputing Center. "E non è solo una questione di apprendimento. Dopo una amputazione delle estremità, una lesione cerebrale, l'insorgenza di una malattia neurodegenerativa, e un ictus, si forma un gran numero di nuove sinapsi per adattare il cervello ai cambiamenti duraturi nei nuovi modelli stimolativi".

L'attività regola la formazione delle sinapsi

Questi risultati mostrano che la formazione di nuove sinapsi è guidata dalla tendenza dei neuroni a mantenere un livello di attività elettrica 'pre-impostato'. Se l'attività elettrica media scende sotto una certa soglia, i neuroni cominciano a stabilire attivamente nuovi punti di contatto. Queste sono le basi per le nuove sinapsi che forniscono input aggiuntivi: aumenta il tasso di attivazione dei neuroni. Questo funziona anche nell'altro senso: non appena il livello di attività supera un limite superiore, il numero di connessioni sinaptiche viene ridotto per evitare qualsiasi sovraeccitazione: diminuisce la frequenza di scariche neuronali.


In natura si verificano frequentemente forme di omeostasi analoghe, per esempio nella regolazione della temperatura corporea e dei livelli di zucchero nel sangue. Tuttavia, Markus Butz puntualizza che questo non funziona senza una certa eccitazione minima dei neuroni: "Un neurone che non riceve più alcun stimolo perde ancora di più sinapsi e muore dopo qualche tempo. Dobbiamo prendere in considerazione questa restrizione se vogliamo che i risultati delle nostre simulazioni concordino con le osservazioni".


Usando la corteccia visiva come esempio, i neuroscienziati hanno studiato i principi in base ai quali i neuroni formano nuove connessioni e abbandonano le sinapsi esistenti. In questa regione del cervello é continuamente rigenerato circa il 10% delle sinapsi. Quando la retina è danneggiata, questa percentuale aumenta ulteriormente. Con simulazioni al computer, gli autori sono riusciti a ricostruire la riorganizzazione dei neuroni in modo conforme ai risultati sperimentali, nella corteccia visiva di topi e scimmie con retine danneggiate.


La corteccia visiva è particolarmente adatta per dimostrare la nuova regola di crescita, perché ha una proprietà denominata retinotopia: Questo vuol dire che i punti proiettati l'uno accanto all'altro sulla retina sono disposti uno accanto all'altro anche quando sono proiettati sulla corteccia visiva, proprio come su una mappa. Se sono danneggiate delle zone della retina, le cellule su cui vengono proiettate le immagini associate ricevono input diversi. "Nelle nostre simulazioni, si può vedere che le aree che non ricevono più alcun input dalla retina iniziano a costruire legami crociati, che permettono loro di ricevere più segnali dalle cellule vicine", dice Markus Butz. Questi legami crociati sono formati lentamente dal bordo della zona danneggiata verso il centro, in un processo simile alla guarigione di una ferita, finché il livello di attività originale è più o meno ripristinato.

Plasticità sinaptica e strutturale

"La nuova regola di crescita fornisce plasticità strutturale con un principio che è semplice quasi come quello della plasticità sinaptica", dice il co-autore Arjen van Ooyen, che lavora da decenni su modelli per lo sviluppo di reti neurali. Già nel 1949, il professore di psicologia Donald Hebb Olding ha scoperto che le connessioni tra i neuroni attivati spesso ​​diventano più forti. Quelli che scambiano poche informazioni si indeboliscono.


Oggi, molti scienziati ritengono che questo principio Hebbiano abbia un ruolo centrale nei processi di apprendimento e memoria. Mentre la plasticità sinaptica è in gran parte coinvolta nei processi di breve termine, quelli che vanno da pochi millisecondi a diverse ore, la plasticità strutturale si estende su scale di tempo più lunghe, da alcuni giorni a mesi.


La plasticità strutturale svolge pertanto un ruolo particolarmente importante nella fase di riabilitazione (precoce) di pazienti affetti da patologie neurologiche, che dura anche settimane e mesi. La visione che guida il progetto è che le idee preziose per il trattamento dei pazienti con ictus potrebbero derivare da previsioni accurate di formazione di sinapsi. Se i medici sapessero come cambierà la struttura del cervello di un paziente e potessero riorganizzarla durante il trattamento, potrebbero determinare i tempi ideali per le fasi di stimolazione e di riposo, migliorando così l'efficienza del trattamento.

Nuovo approccio per numerose applicazioni

"E' stato in precedenza ipotizzato che anche la plasticità strutturale segue il principio della plasticità Hebbiana. I risultati suggeriscono invece che la plasticità strutturale è governata dal principio omeostatico, che non è stato preso in considerazione prima", dice il Prof. Abigail Morrison, responsabile del Simulation Laboratory Neuroscience del Jülich. Il suo team sta già integrando la nuova regola nel software di simulazione ad accesso libero NEST, che viene utilizzato da numerosi scienziati di tutto il mondo.


Questi risultati sono rilevanti anche per il progetto Human Brain. Neuroscienziati, scienziati medici, informatici, fisici e matematici in Europa stanno lavorando insieme per simulare l'intero cervello umano su computer ad alte prestazioni della prossima generazione, al fine di capire meglio come funziona. "A causa della complessa circuiteria sinaptica nel cervello umano, non è plausibile che la sua tolleranza ai guasti e la flessibilità siano ottenuti sulla base di regole statiche di connessione. Sono necessari quindi dei modelli per un processo di auto-organizzazione", dice il Prof. Markus Diesmann dell'Istituto di Neuroscienze e Medicina del Jülich che è coinvolto nel progetto. Egli dirige il Computational and Systems Neuroscience (INM-6), una branchia dell'istituto che funziona da interfaccia tra la ricerca neuroscientifica e la tecnologia di simulazione.

 

 

 

 

 


Fonte: Forschungszentrum Juelich.

Riferimenti: Markus Butz, Arjen van Ooyen. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. PLoS Computational Biology, 2013; 9 (10): e1003259 DOI: 10.1371/journal.pcbi.1003259

Pubblicato in fz-juelich.de (> English version) - Traduzione di Franco Pellizzari.

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari proposti da Google sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.

Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra:

 


 

 

Notizie da non perdere

Scoperta nuova causa di Alzheimer e di demenza vascolare

21.09.2023

Uno studio evidenzia la degenerazione delle microglia nel cervello causata dalla tossicità del ferro...

Malato di Alzheimer: la casa di cura la paga lo Stato?

25.05.2023

Chi si fa carico delle spese per un malato di Alzheimer ricoverato in una casa di riposo? Scopriamo ...

La demenza ci fa vivere con emozioni agrodolci

23.05.2023

Il detto è: dolce è la vita. E, anche se vorremmo momenti costantemente dolci, la vita s...

I ricordi potrebbero essere conservati nelle membrane dei tuoi neuroni

18.05.2023

Il cervello è responsabile del controllo della maggior parte delle attività del corpo; l...

Immergersi nella natura: gioia, meraviglia ... e salute mentale

10.05.2023

La primavera è il momento perfetto per indugiare sulle opportunità.

La primavera è un m...

Qualità della vita peggiora quando l'Alzheimer è complicato dal cancro

28.04.2023

Che considerazioni si possono fare per una persona con Alzheimer che riceve anche la diagnosi di can...

Gli interventi non farmacologici per l'Alzheimer sono sia efficaci che co…

19.04.2023

Un team guidato da ricercatori della Brown University ha usato una simulazione al computer per di...

Farmaci per il sonno: limitazioni e alternative

18.04.2023

Uno studio pubblicato di recente sul Journal of Alzheimer's Disease è l'ultima ...

Menopausa precoce e terapia ormonale ritardata alzano il rischio di Alzheimer

17.04.2023

Le donne hanno più probabilità degli uomini di sviluppare il morbo di Alzheimer (MA), e ...

Flusso del fluido cerebrale può essere manipolato dalla stimolazione sensorial…

11.04.2023

Ricercatori della Boston University, negli Stati Uniti, riferiscono che il flusso di liq...

L'impatto del sonno su cognizione, memoria e demenza

2.03.2023

Riduci i disturbi del sonno per aiutare a prevenire il deterioramento del pensiero.

10 Consigli dei neurologi per ridurre il tuo rischio di demenza

28.02.2023

La demenza colpisce milioni di persone in tutto il mondo, quasi un over-65 su 10. Nonost...

Orienteering: un modo per addestrare il cervello e contrastare il declino cogn…

27.01.2023

Lo sport dell'orienteering (orientamento), che attinge dall'atletica, dalle cap...

Effetti della carenza di colina sulla salute neurologica e dell'intero si…

23.01.2023

Assorbire colina a sufficienza dall'alimentazione è cruciale per proteggere il corpo e il cervello d...

Scoperta ulteriore 'barriera' anatomica che difende e monitora il ce…

11.01.2023

Dalla complessità delle reti neurali, alle funzioni e strutture biologiche di base, il c...

L'invecchiamento è guidato da geni sbilanciati

21.12.2022

Il meccanismo appena scoperto è presente in vari tipi di animali, compresi gli esseri umani.

Goccioline liquide dense come computer cellulari: nuova teoria sulla causa del…

22.09.2022

Un campo emergente è capire come gruppi di molecole si condensano insieme all'interno de...

'Ingorgo' di proteine nei neuroni legato alla neurodegenerazione

12.09.2022

Un nuovo studio condotto da ricercatori dell'EPFL rivela che un complesso proteico malfunzionante pu...

Scoperto un fattore importante che contribuisce all'Alzheimer

22.08.2022

Una ricerca guidata dai dott. Yuhai Zhao e Walter Lukiw della Luisiana State University ...

Dare un senso alla relazione obesità-demenza

2.08.2022

Questo articolo farà capire al lettore perché l'obesità a volte può aumentare il rischio...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.