Ricerche
Creare ricordi: studio chiarisce come i neuroni formano la memoria a lungo termine
Dopo l'esposizione a un nuovo ambiente, una popolazione sparsa di neuroni nell'ippocampo di un topo esprime Fos (rosso). Fonte: Yap e colleghi
In una giornata di fine estate nel 1953, un giovane che sarebbe presto diventato famoso come 'paziente H.M.' ha subito un intervento chirurgico sperimentale. Nel tentativo di trattare le sue convulsioni debilitanti, un chirurgo ha rimosso porzioni del suo cervello, compresa una parte di una struttura chiamata ippocampo. Le convulsioni si sono fermate.
Sfortunatamente per il paziente H.M., è stato così anche per il tempo. Quando si è svegliato dopo l'intervento chirurgico, non riusciva più a formare nuovi ricordi a lungo termine, nonostante conservasse la normalità delle abilità cognitive, del linguaggio e della memoria di lavoro a breve termine. La condizione del paziente H.M. alla fine ha rivelato che la capacità del cervello di creare ricordi a lungo termine è un processo distinto che dipende dall'ippocampo.
Gli scienziati avevano scoperto dove sono creati i ricordi. Ma il come è rimasto finora ignoto. Ora, neuroscienziati della Harvard University hanno fatto un passo decisivo per comprendere la biologia della memoria a lungo termine e per trovare i modi per intervenire quando si verificano deficit di memoria con l'età o per una malattia.
Riferendo su Nature il 9 dicembre, descrivono un meccanismo usato dai neuroni nell'ippocampo del topo adulto per regolare i segnali che ricevono da altri neuroni, in un processo che appare cruciale per il consolidamento e il richiamo della memoria. Lo studio è stato guidato da Lynn Yap, dottorando in neurobiologia, e da Michael Greenberg, presidente di neurobiologia nell'Istituto Blavatnik di Harvard.
"La memoria è essenziale per tutti gli aspetti dell'esistenza umana. La questione di come codifichiamo i ricordi che durano una vita è fondamentale, e il nostro studio arriva al cuore di questo fenomeno", ha dichiarato Greenberg, professore di neurobiologia e autore senior dello studio.
I ricercatori hanno osservato che le nuove esperienze attivano popolazioni sparse di neuroni nell'ippocampo che esprimono due geni, Fos e Scg2. Questi geni consentono ai neuroni di regolare finemente i segnali dei cosiddetti 'interneuroni inibitori', le cellule che smorzano l'eccitazione neuronale. In questo modo, piccoli gruppi di neuroni disparati possono formare reti persistenti con attività coordinate in risposta a un'esperienza.
"Questo meccanismo probabilmente consente ai neuroni di parlare meglio tra loro, così che la prossima volta che vogliamo richiamare un ricordo, i neuroni sparano in modo più sincrono", ha detto Yap. "Pensiamo che l'attivazione coincidente di questo circuito, mediata dal Fos, sia potenzialmente una caratteristica necessaria per il consolidamento della memoria durante il sonno, ad esempio, e anche del richiamo dei ricordi, nel cervello".
Orchestrazione del circuito
Per formare ricordi, il cervello deve in qualche modo cablare un'esperienza nei neuroni, in modo che quando questi neuroni saranno riattivati, l'esperienza iniziale può essere richiamata. Nel loro studio, Greenberg, Yap e il team si sono proposti di esplorare questo processo esaminando il gene Fos.
Descritto per la prima volta nelle cellule neuronali da Greenberg e colleghi nel 1986, il Fos è espresso entro pochi minuti dopo l'attivazione di un neurone. Gli scienziati hanno approfittato di questa proprietà, usando il Fos come indicatore di attività neuronale recente, per identificare le cellule cerebrali che regolano la sete, il torpore e molti altri comportamenti.
Gli scienziati hanno ipotizzato che il Fos abbia un ruolo fondamentale nell'apprendimento e nella memoria, ma per decenni, la funzione precisa del gene è rimasta un mistero. Per capirlo, i ricercatori hanno esposto i topi a nuovi ambienti e hanno tenuto sotto osservazione i neuroni piramidali, le principali cellule dell'ippocampo.
Hanno scoperto che popolazioni relativamente sparse di neuroni esprimevano Fos dopo l'esposizione a una nuova esperienza. Successivamente, hanno impedito a questi neuroni di esprimere il Fos, usando uno strumento basato su virus portato su un'area specifica dell'ippocampo, che non influenzava le altre cellule.
I topi con il Fos bloccato in questo modo mostravano deficit di memoria significativi nella valutazione con un labirinto che richiedeva loro di richiamare i dettagli spaziali, indicando che il gene ha un ruolo critico nella formazione della memoria.
I ricercatori hanno studiato le differenze tra i neuroni che esprimevano Fos e quelli che non lo facevano. Usando l'optogenetica per trasformare i segnali da diversi neuroni vicini, hanno scoperto che l'attività dei neuroni che esprimono Fos era fortemente influenzata da due tipi di interneuroni. I neuroni che esprimono Fos hanno dimostrato di ricevere un aumento di segnali di smorzamento dell'attività (inibitori) da un tipo distinto di interneurone e meno segnali inibitori da un altro tipo. Questi modelli di segnalazione scomparivano nei neuroni senza espressione di Fos.
"Ciò che è fondamentale per questi interneuroni è che possono regolare quando e quanti neuroni singoli attivati da Fos sparano, e anche quando sparano rispetto ad altri neuroni nel circuito", ha detto Yap. "Pensiamo che finalmente abbiamo capito come il Fos può realmente supportare i processi di memoria, in particolare orchestrando questo tipo di plasticità dei circuiti nell'ippocampo".
Immagina il giorno
I ricercatori hanno ulteriormente sondato la funzione del Fos, che codifica una proteina del fattore di trascrizione che regola altri geni. Hanno usato il sequenziamento a cellula singola e ulteriori selezioni genomiche per identificare i geni attivati dal Fos e hanno scoperto che un gene in particolare, Scg2, ha un ruolo fondamentale nella regolazione dei segnali inibitori.
Nei topi con Scg2 silenziato sperimentalmente, i neuroni attivati dal Fos nell'ippocampo hanno mostrato un difetto nella segnalazione da entrambi i tipi di interneuroni. Questi topi avevano anche difetti nei ritmi theta e gamma, le proprietà del cervello ritenute caratteristiche cruciali per l'apprendimento e la memoria.
Gli studi precedenti avevano dimostrato che il Scg2 codifica una proteina neuropeptide che può essere scissa in quattro forme distinte, che vengono quindi secrete. Nell'attuale studio, Yap e colleghi hanno scoperto che i neuroni sembrano usare questi neuropeptidi per regolare con precisione i segnali che ricevono dagli interneuroni.
Nell'insieme, gli esperimenti della squadra suggeriscono che dopo una nuova esperienza, un piccolo gruppo di neuroni esprime contemporaneamente il Fos, attivando il Scg2 e i suoi neuropeptidi derivati, al fine di stabilire una rete coordinata con l'attività regolata dagli interneuroni.
"Quando, dopo una nuova esperienza, i neuroni sono attivati nell'ippocampo, non sono necessariamente collegati insieme in modo particolare in anticipo", ha detto Greenberg. "Ma gli interneuroni hanno un'ampia ramificazione assonale, il che significa che possono connettersi e segnalare a molte cellule contemporaneamente. Questo potrebbe essere il modo in cui un gruppo sparso di neuroni può legarsi insieme per codificare infine una memoria".
I risultati dello studio rappresentano un possibile meccanismo molecolare e a livello di circuito per la memoria a lungo termine. Fanno nuova luce sulla biologia fondamentale della formazione della memoria e hanno ampie implicazioni per le malattie di disfunzione della memoria. I ricercatori notano, tuttavia, che anche se i risultati sono un passo importante per capire il funzionamento interno della memoria, rimangono numerose domande senza risposta sui meccanismi appena identificati.
"Non siamo ancora del tutto alla risposta, ma ora possiamo vedere molti dei prossimi passi che devono essere fatti", ha detto Greenberg. "Se potremo capire meglio questo processo, potremo controllare meglio la memoria e intervenire quando le cose vanno male, sia nella perdita di memoria legata all'età che nei disturbi neurodegenerativi come l'Alzheimer".
I risultati rappresentano il culmine di decenni di ricerca, anche se aprono nuovi percorsi di studio che probabilmente impiegheranno decenni per essere esplorati, ha aggiunto Greenberg:
"Sono arrivato a Harvard nel 1986, proprio quando è stato pubblicato il mio studio che descriveva la scoperta che l'attività neuronale può accendere i geni. Da quel momento, non ho fatto che immaginare il giorno in cui capiremo come i geni, come il Fos, possono contribuire alla memoria a lungo termine".
Fonte: Kevin Jiang in Harvard University (> English) - Traduzione di Franco Pellizzari.
Riferimenti: Ee-Lynn Yap, Noah Pettit, Christopher Davis, Aurel Nagy, David Harmin, Emily Golden, Onur Dagliyan, Cindy Lin, Stephanie Rudolph, Nikhil Sharma, Eric Griffith, Christopher Harvey, Michael Greenberg. Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature, 2020, DOI
Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.
Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer onlus di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.
Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.
Annuncio pubblicitario
Privacy e sicurezza dati - Informativa ex Art. 13 D. Lgs. 196/03
Gentile visitatore,
l'Associazione tratterà i Tuoi dati personali nel rispetto del D. Lgs. 196/G3 (Codice della privacy), garantendo la riservatezza e la protezione dei dati.
Finalità e modalità del trattamento: I dati personali che volontariamente deciderai di comunicarci, saranno utilizzati esclusivamente per le attività del sito, per la gestione del rapporto associativo e per l'adempimento degli obblighi di legge. I trattamenti dei dati saranno svolti in forma cartacea e mediante computer, con adozione delle misure di sicurezza previste dalla legge. I dati non saranno comunicati a terzi né saranno diffusi.
Dati sensibili: Il trattamento di dati sensibili ex art. 1, lett. d del Codice sarà effettuato nei limiti di cui alle autorizzazioni del Garante n. 2/08 e n. 3/08, e loro successive modifiche.
Diritti dell'interessata/o: Nella qualità di interessato, Ti sono garantiti tutti i diritti specificati all'art. 7 del Codice, tra cui il diritto di chiedere e ottenere l'aggiornamento, la rettificazione o l'integrazione dei dati, la cancellazione, la trasformazione in forma anonima o il blocco dei dati trattati in violazione di legge, e il diritto di opporsi, in tutto o in parte, per motivi legittimi, al trattamento dei dati personali che Ti riguardano.
Titolare del trattamento è l'Associazione di volontariato "Associazione Alzheimer o.n.l.u.s.”, con sede a Riese Pio X – Via Schiavonesca, 13 – telefax 0423 750 324.
Responsabile del trattamento è la segretaria dell’Associazione in carica.
Gestione «cookies»
Un cookie è una breve stringa di testo che il sito web che si sta visitando salva automaticamente sul computer dell'utente. I cookies sono utilizzati dagli amministratori di molti siti web per migliorarne funzionamento ed efficienza e per raccogliere dati sui visitatori.
Il nostro sito non utilizza i cookies per identificare i visitatori, ma per raccogliere informazioni al fine di arricchirne i contenuti e rendere il sito più fruibile.
Come cambiare le impostazioni del browser per la gestione dei cookies
È possibile decidere se permettere ai siti web che vengono visitati di installare i cookies modificando le impostazioni del browser usato per la navigazione. Se hai già visitato il nostro sito, alcuni cookies potrebbero essere già stati impostati automaticamente sul tuo computer. Per sapere come eliminarli, clicca su uno dei link qui di seguito: