Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Creato tessuto di tipo cerebrale funzionale in 3D

Creato tessuto di tipo cerebrale funzionale in 3DBioingegneri hanno creato un tessuto tridimensionale simile a quello cerebrale che funziona come (e ha caratteristiche strutturali simili) al tessuto nel cervello di ratto e può essere tenuto in vita in laboratorio per più di due mesi.


Come prima dimostrazione del suo potenziale, i ricercatori hanno usato il tessuto di tipo cerebrale per studiare i cambiamenti chimici ed elettrici che avvengono immediatamente dopo i traumi cerebrali e, in un esperimento separato, i cambiamenti che accadono in risposta ad un farmaco.


Il tessuto potrebbe fornire un modello superiore per lo studio della funzione cerebrale normale, così come di lesioni e malattie, e potrebbe contribuire allo sviluppo di nuovi trattamenti per le disfunzioni cerebrali, come la demenza.


Il tessuto di tipo cerebrale è stato sviluppato al Tissue Engineering Resource Center della Tufts University di Boston, che è finanziato dal National Institute of Biomedical Imaging and Bioengineering (NIBIB) per creare biomateriali innovativi e modelli di ingegneria dei tessuti. David Kaplan, PhD, professore «Stern Family» di Ingegneria alla Tufts University è direttore del centro e ha guidato la ricerca per sviluppare il tessuto.


Finora gli scienziati avevano sviluppato i neuroni in capsule di Petri per studiare il loro comportamento in un ambiente controllabile. Però i neuroni coltivati ​​in due dimensioni non sono in grado di replicare la complessa organizzazione strutturale del tessuto cerebrale, che consiste in aree separate di materia grigia e bianca. Nel cervello la materia grigia è composta principalmente dai corpi cellulari dei neuroni, mentre la sostanza bianca è costituita da fasci di assoni, che sono le proiezioni che i neuroni inviano per collegarsi tra loro. Poiché le lesioni e le malattie cerebrali colpiscono spesso queste aree in modo diverso, sono necessari modelli che compartimentano le sostanze grigia e bianca.


Recentemente gli ingegneri dei tessuti hanno tentato di far crescere neuroni in ambienti gel 3D, dove possono stabilire liberamente dei collegamenti in tutte le direzioni. Però questi modelli di tessuto a base di gel non vivono a lungo e non riescono a produrre una funzione robusta al livello di quella dei tessuti. Questo accade perché l'ambiente extracellulare è una matrice complessa in cui i segnali locali stabiliscono diversi vicinati che favoriscono la crescita e/o lo sviluppo e la funzione di cellule distinte. Dare semplicemente lo spazio perchè i neuroni crescano in tre dimensioni non è sufficiente.


Nell'edizione anticipata on line dell'11 agosto dei Proceedings of the National Academy of Sciences, un gruppo di bioingegneri rifierisce ora di aver creato con successo un tessuto di tipo cerebrale in 3D funzionale che presenta una compartimentazione della materia grigia e bianca e può sopravvivere in laboratorio per più di due mesi. "Questo lavoro è un'impresa eccezionale", ha detto Rosemarie Hunziker, PhD, direttrice del programma di Ingegneria dei Tessuti al NIBIB. "Esso combina una profonda comprensione della fisiologia del cervello con una grande e crescente gamma di strumenti di bioingegneria per creare un ambiente che è necessario e sufficiente per imitare la funzione del cervello".


Picture of silk scaffold close upLa chiave per generare il tessuto di tipo cerebrale era la creazione di una struttura composita innovativa che consiste di due biomateriali con proprietà fisiche diverse: una impalcatura spugnosa fatta di proteine ​​della seta e un gel morbido a base di collagene. La struttura permette ai neuroni di ancorarsi, e il gel incoraggia gli assoni a crescere attraverso di essa.

Per acquisire una compartimentazione delle materie grigia e bianca, i ricercatori hanno tagliato la struttura spugnosa in forma di ciambella e l'hanno popolata con i neuroni di ratto. Hanno poi riempito il centro della ciambella con il gel a base di collagene, che successivamente ha permeato la struttura.


In pochi giorni, i neuroni hanno formato delle reti funzionali intorno ai pori della scaffalatura, e hanno inviato lunghe proiezioni assonali attraverso il gel nel centro, per connettersi ai neuroni sul lato opposto della ciambella. Il risultato era una regione di sostanza bianca distinta (contenente per lo più proiezioni cellulari, gli assoni) formata nel centro della ciambella, che era separata dalla materia grigia circostante (dove erano concentrati i corpi cellulari).


Nel corso di diverse settimane, i ricercatori hanno condotto esperimenti per determinare la salute e la funzionalità dei neuroni che crescevano nel loro tessuto di tipo cerebrale 3D e li hanno confrontati con i neuroni cresciuti in un ambiente solo di gel collagene o in un piatto 2D. I ricercatori hanno scoperto che i neuroni nei tessuti di tipo cerebrale 3D hanno avuto una maggiore espressione dei geni coinvolti nella crescita e nella funzione dei neuroni.


Inoltre, i neuroni coltivati ​​nel tessuto cerebrale 3D hanno mantenuto un'attività metabolica stabile fino a cinque settimane, mentre la salute dei neuroni coltivati ​​in ambiente di solo gel hanno cominciato a deteriorarsi in 24 ore. Per quanto riguarda la funzione, i neuroni nel tessuto cerebrale 3D hanno evidenziato un'attività elettrica e una risposta che imitano i segnali osservati nel cervello integro, compreso uno schema tipico di risposta elettrofisiologica ad una neurotossina.

Creato tessuto di tipo cerebrale
Poiché il tessuto di tipo cerebrale 3D mostra le proprietà fisiche simili al tessuto cerebrale dei roditori, i ricercatori hanno cercato di determinare se potevano usarlo per studiare delle lesioni cerebrali traumatiche. Per simulare una lesione cerebrale traumatica, è stato lasciato cadere un peso sul tessuto cerebrale da diverse altezze.


I ricercatori hanno poi registrato le variazioni nell'attività elettrica e chimica dei neuroni, che si è rivelata simile a quella che viene di solito osservata negli studi animali di lesioni cerebrali traumatiche.


Kaplan dice che la capacità di studiare una lesione traumatica in un modello di tessuto offre vantaggi rispetto agli studi su animali, in cui le misure sono ritardate durante il sezionamento e la preparazione del cervello per gli esperimenti. "Con il sistema che abbiamo, si può essenzialmente monitorare la risposta dei tessuti al trauma cranico in tempo reale", ha detto Kaplan. "Ancora più importante, si può anche iniziare a seguire la riparazione e ciò che accade su periodi di tempo più lunghi".


Kaplan ha sottolineato l'importanza della longevità del tessuto cerebrale per lo studio di altri disturbi cerebrali. "Il fatto che possiamo mantenere questo tessuto per mesi in laboratorio significa che possiamo cominciare a guardare alle malattie neurologiche in modi non possibili altrimenti, perché c'è bisogno di lunghi tempi di studiare alcune delle principali malattie del cervello", ha detto.


La Hunziker ha aggiunto che "i buoni modelli consentono ipotesi solide che possono essere testate con cura. La speranza è che l'uso di questo modello possa portare ad una accelerazione delle terapie per le disfunzioni cerebrali e offrire un modo migliore per studiare la normale fisiologia del cervello".


Kaplan e il suo team stanno ora cercando di rendere il loro modello più simile possibile al tessuto cerebrale. In questo recente rapporto, i ricercatori hanno dimostrato che possono modificare l'impalcatura a ciambella in modo che consista di sei anelli concentrici, ciascuno in grado di essere popolato con diversi tipi di neuroni. Tale soluzione potrebbe imitare i sei strati della corteccia cerebrale umana, in cui esistono diversi tipi di neuroni.


Nell'ambito del contratto di finanziamento per il Tissue Engineering Resource Center, il NIBIB richiede che le nuove tecnologie generate al centro siano condivise con la comunità di ricerca biomedica allargata. "Siamo ansiosi di costruire collaborazioni con altri laboratori che vogliono partire da questo modello di tessuto", ha detto Kaplan.


Il lavoro è stato finanziato dal National Institute of Biomedical Imaging and Bioengineering.

 

 

 

 

 


FonteNIBIB  (> English text) - Traduzione di Franco Pellizzari.

Riferimenti:  Min D. Tang-Schomer, James D. White, Lee W. Tien, L. Ian Schmitt, Thomas M. Valentin, Daniel J. Graziano, Amy M. Hopkins, Fiorenzo G. Omenetto, Philip G. Haydon, and David L. Kaplan. Bioengineered functional brain-like cortical tissue. PNAS, August 11, 2014 DOI: 10.1073/pnas.1324214111

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.

Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra:

 


 

 

Notizie da non perdere

Ricercatori delineano un nuovo approccio per trattare le malattie degenerative

8.05.2024

Le proteine sono i cavalli da soma della vita. Gli organismi li usano come elementi costitutivi, ...

Perché la tua visione può prevedere la demenza 12 anni prima della diagnosi

24.04.2024

 

Gli occhi possono rivelare molto sulla salute del nostro cervello: in effetti, i p...

Accumulo di proteine sulle gocce di grasso implicato nell'Alzheimer ad es…

21.02.2024

In uno studio durato 5 anni, Sarah Cohen PhD, biologa cellulare della UNC e Ian Windham della Rockef...

Sintomi visivi bizzarri potrebbero essere segni rivelatori dell'Alzheimer…

1.02.2024

Un team di ricercatori internazionali, guidato dall'Università della California di San F...

Demenze: forti differenze regionali nell’assistenza, al Nord test diagnostici …

30.01.2024

In Iss il Convegno finale del Fondo per l’Alzheimer e le Demenze, presentate le prime linee g...

Svelata una teoria rivoluzionaria sull'origine dell'Alzheimer

28.12.2023

Nonostante colpisca milioni di persone in tutto il mondo, il morbo di Alzheimer (MA) man...

Diagnosi di Alzheimer: prenditi del tempo per elaborarla, poi vai avanti con m…

4.12.2023

Come posso accettare la diagnosi di Alzheimer?

Nathaniel Branden, compianto psicoterape...

Zen e mitocondri: il macchinario della morte rende più sana la vita

20.11.2023

Sebbene tutti noi aspiriamo a una vita lunga, ciò che è più ambito è un lungo periodo di...

Infezione cerebrale da funghi produce cambiamenti simili all'Alzheimer

26.10.2023

Ricerche precedenti hanno implicato i funghi in condizioni neurodegenerative croniche co...

Scoperta nuova causa di Alzheimer e di demenza vascolare

21.09.2023

Uno studio evidenzia la degenerazione delle microglia nel cervello causata dalla tossicità del ferro...

Malato di Alzheimer: la casa di cura la paga lo Stato?

25.05.2023

Chi si fa carico delle spese per un malato di Alzheimer ricoverato in una casa di riposo? Scopriamo ...

I ricordi potrebbero essere conservati nelle membrane dei tuoi neuroni

18.05.2023

Il cervello è responsabile del controllo della maggior parte delle attività del corpo; l...

Qualità della vita peggiora quando l'Alzheimer è complicato dal cancro

28.04.2023

Che considerazioni si possono fare per una persona con Alzheimer che riceve anche la diagnosi di can...

Gli interventi non farmacologici per l'Alzheimer sono sia efficaci che co…

19.04.2023

Un team guidato da ricercatori della Brown University ha usato una simulazione al computer per di...

Menopausa precoce e terapia ormonale ritardata alzano il rischio di Alzheimer

17.04.2023

Le donne hanno più probabilità degli uomini di sviluppare il morbo di Alzheimer (MA), e ...

Flusso del fluido cerebrale può essere manipolato dalla stimolazione sensorial…

11.04.2023

Ricercatori della Boston University, negli Stati Uniti, riferiscono che il flusso di liq...

L'impatto del sonno su cognizione, memoria e demenza

2.03.2023

Riduci i disturbi del sonno per aiutare a prevenire il deterioramento del pensiero.

Orienteering: un modo per addestrare il cervello e contrastare il declino cogn…

27.01.2023

Lo sport dell'orienteering (orientamento), che attinge dall'atletica, dalle cap...

Effetti della carenza di colina sulla salute neurologica e dell'intero si…

23.01.2023

Assorbire colina a sufficienza dall'alimentazione è cruciale per proteggere il corpo e il cervello d...

Scoperta ulteriore 'barriera' anatomica che difende e monitora il ce…

11.01.2023

Dalla complessità delle reti neurali, alle funzioni e strutture biologiche di base, il c...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.