Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Problemi persistenti negli studi genomici assistiti dall'IA, anche per l'Alzheimer

genetics AD

Ricercatori dell'Università del Wisconsin di Madison avvertono che gli strumenti di intelligenza artificiale (IA) che stanno diventando popolari nei settori della genetica e della medicina possono portare a conclusioni errate sulla connessione tra geni e caratteristiche fisiche, compresi i fattori di rischio per malattie come il diabete e l'Alzheimer.


Le previsioni difettose sono legate all'uso da parte dei ricercatori dell'IA per aiutare gli studi di associazione a livello del genoma. Tali studi scansionano centinaia di migliaia di variazioni genetiche di molte persone, per cogliere i legami tra geni e tratti fisici. Di particolare interesse sono le possibili connessioni tra variazioni genetiche e determinate malattie.

 

Il legame genetica - malattia non è sempre semplice

La genetica ha un ruolo nello sviluppo di molte condizioni di salute. Mentre i cambiamenti in alcuni singoli geni sono collegati direttamente ad un aumento del rischio di malattie come la fibrosi cistica, la relazione tra genetica e tratti fisici è spesso più complicata.


Gli studi di associazione a livello dell'intero genoma hanno contribuito a districare alcune di queste complessità, spesso lavorando su grandi database di profili genetici e caratteristiche della salute di individui, come il progetto All of Us dei National Institutes of Health in USA e la UK Biobank. Tuttavia, questi database mancano spesso di dati sulle condizioni di salute che i ricercatori stanno cercando di studiare.


"Alcune caratteristiche sono molto costose o elaborate da misurare, quindi semplicemente non hai abbastanza campioni per trarre conclusioni statistiche significative sulla loro associazione con la genetica", afferma Qiongshi Lu, professore associato nel dipartimento di informatica medica della UW-Madisone ed esperto di studi di associazione a livello dell'intero genoma.

 

I rischi di coprire le lacune nei dati con l'IA

I ricercatori stanno tentando sempre più di risolvere questo problema colmando le lacune nei dati con strumenti di IA sempre più sofisticati.


"Negli ultimi anni è diventato molto popolare sfruttare i progressi nell'apprendimento automatico, quindi ora abbiamo questi modelli avanzati di IA che i ricercatori usano per prevedere tratti complessi e rischi per le malattie, persino con dati limitati", afferma Lu, che ora, con i suoi colleghi ha dimostrato il pericolo di fare affidamento su questi modelli senza proteggere dalle distorsioni che possono introdurre.


Il team descrive il problema in uno studio (rif.1) pubblicato su Nature Genetics. In esso, mostra che un tipo comune di algoritmo di apprendimento automatico impiegato negli studi di associazione a livello dell'intero genoma può erroneamente collegare diverse variazioni genetiche con il rischio di un individuo di sviluppare il diabete di tipo 2.


"Il problema è che se ti fidi che il rischio di diabete previsto dall'apprendimento automatico è il rischio effettivo, potresti pensare che tutte quelle variazioni genetiche siano correlate al diabete effettivo anche se non lo sono", afferma Lu. "Questi 'falsi positivi' non si limitano a queste variazioni specifiche e al rischio del diabete, ma sono un pregiudizio pervasivo negli studi assistiti dall'IA".

 

Il nuovo metodo statistico può ridurre i falsi positivi

Oltre a identificare il problema dell'affidamento eccessivo sugli strumenti di IA, Lu e i suoi colleghi propongono un metodo statistico che i ricercatori possono usare per garantire l'affidabilità dei loro studi di associazione a livello dell'intero genoma assistiti dall'IA.


Il metodo aiuta a rimuovere la distorsione che gli algoritmi di apprendimento automatico possono introdurre quando stanno facendo inferenze basate su informazioni incomplete. "Questa nuova strategia è statisticamente ottimale", afferma Lu, che osserva che il team l'ha usata per individuare meglio le associazioni genetiche con la densità minerale ossea degli individui.

 

IA non l'unico problema di alcuni studi di associazione a livello del genoma

Mentre il metodo statistico proposto dal gruppo potrebbe aiutare a migliorare l'accuratezza degli studi assistiti dall'IA, Lu e i colleghi hanno recentemente identificato problemi in studi simili che riempiono le lacune dei dati con informazioni rappresentative (proxy) piuttosto che con algoritmi.


In un altro studio (rif.2) pubblicato di recente su Nature Genetics, i ricercatori suonano l'allarme sugli studi che si basano eccessivamente alle informazioni rappresentative nel tentativo di stabilire connessioni tra genetica e determinate malattie. Ad esempio, i grandi database sanitari come la UK Biobank hanno molte informazioni genetiche su grandi popolazioni, ma non hanno molti dati sull'incidenza di malattie che tendono a spuntare più avanti nella vita, come la maggior parte delle neurodegenerazioni.


Per il morbo di Alzheimer (MA) in particolare, alcuni ricercatori hanno tentato di colmare questo divario con dati rappresentativi raccolti attraverso sondaggi sulla storia della salute familiare, in cui gli individui possono segnalare la diagnosi di MA di un genitore.


Il team dell'UW-Madison ha scoperto che tali studi con informazioni rappresentative possono produrre una "correlazione genetica altamente fuorviante" tra il rischio di MA e le capacità cognitive più elevate.


“Al momento, gli scienziati genomici lavorano abitualmente con set di dati di biobanche che hanno centinaia di migliaia di individui; tuttavia, man mano che il potere statistico aumenta, anche i pregiudizi e la probabilità di errori sono amplificati in questi enormi set di dati", afferma Lu. "I recenti studi del nostro gruppo forniscono esempi avvilenti ed evidenziano l'importanza del rigore statistico negli studi di ricerca su scala di biobanca".

 

 

 


Fonte: Will Cushman in University of Wisconsin-Madison (> English) - Traduzione di Franco Pellizzari.

Riferimenti:

  1. J Miao, [+5], Q Lu. Valid inference for machine learning-assisted genome-wide association studies. Nat Genet, 2024, DOI

  2. Y Wu, [+6], Q Lu. Pervasive biases in proxy genome-wide association studies based on parental history of Alzheimer’s. Nat Genet, 2024, DOI

Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 

 

Notizie da non perdere

Gli interventi non farmacologici per l'Alzheimer sono sia efficaci che co…

19.04.2023 | Ricerche

Un team guidato da ricercatori della Brown University ha usato una simulazione al computer per di...

Molecola 'anticongelante' può impedire all'amiloide di formare …

27.06.2018 | Ricerche

La chiave per migliorare i trattamenti per le lesioni e le malattie cerebrali può essere nelle mo...

Acetil-L-carnitina può aiutare la memoria, anche insieme a Vinpocetina e Huper…

27.03.2020 | Esperienze & Opinioni

Demenza grave, neuropatie (nervi dolorosi), disturbi dell'umore, deficit di attenzione e...

5 tipi di ricerca, sottostudiati al momento, potrebbero darci trattamenti per …

27.04.2020 | Esperienze & Opinioni

Nessun ostacolo fondamentale ci impedisce di sviluppare un trattamento efficace per il m...

Flusso del fluido cerebrale può essere manipolato dalla stimolazione sensorial…

11.04.2023 | Ricerche

Ricercatori della Boston University, negli Stati Uniti, riferiscono che il flusso di liq...

Cerca il tuo sonno ideale: troppo e troppo poco legati al declino cognitivo

28.10.2021 | Ricerche

Come tante altre cose buone della vita, il sonno fa meglio se è moderato. Uno studio plu...

Perché vivere in un mondo ‘incredibilmente tossico’ aumenta il rischio di Alzh…

6.05.2020 | Denuncia & advocacy

Sei preoccupato per la minaccia del morbo di Alzheimer (MA), e ti stai chiedendo che cos...

Livelli di ossigeno nel sangue potrebbero spiegare perché la perdita di memori…

9.06.2021 | Ricerche

Per la prima volta al mondo, scienziati dell'Università del Sussex hanno registrato i li...

Goccioline liquide dense come computer cellulari: nuova teoria sulla causa del…

22.09.2022 | Ricerche

Un campo emergente è capire come gruppi di molecole si condensano insieme all'interno de...

'Evitare l'Alzheimer potrebbe essere più facile di quanto pensi'…

16.11.2018 | Esperienze & Opinioni

Hai l'insulino-resistenza? Se non lo sai, non sei sola/o. Questa è forse la domanda più ...

Come rimodellare con le arti l'assistenza alla demenza

14.12.2020 | Esperienze & Opinioni

Da bambina, Anne Basting è andata a trovare la nonna nella casa di riposo. 'Impressionante' è la ...

Nuovo farmaco previene le placche amiloidi, un segno specifico di Alzheimer

8.03.2021 | Ricerche

Le placche di amiloide sono caratteristiche patologiche del morbo di Alzheimer (MA): son...

Lavati i denti, posticipa l'Alzheimer: legame diretto tra gengivite e mal…

4.06.2019 | Ricerche

Dei ricercatori hanno stabilito che la malattia gengivale (gengivite) ha un ruolo decisi...

Scoperto perché l'APOE4 favorisce l'Alzheimer e come neutralizzarlo

10.04.2018 | Ricerche

Usando cellule di cervello umano, scienziati dei Gladstone Institutes hanno scoperto la ...

Laser a infrarossi distrugge le placche di amiloide nell'Alzheimer

7.08.2020 | Ricerche

L'aggregazione di proteine ​​in strutture chiamate 'placche amiloidi' è una caratteristi...

Dosi basse di radiazioni possono migliorare la qualità di vita nell'Alzhe…

6.05.2021 | Ricerche

Individui con morbo di Alzheimer (MA) grave hanno mostrato notevoli miglioramenti nel co...

Curare l'Alzheimer: singolo proiettile magico o sparo di doppietta?

20.03.2025 | Esperienze & Opinioni

Perché i ricercatori stanno ancora annaspando nella ricerca di una cura per quella che è...

Accumulo di proteine sulle gocce di grasso implicato nell'Alzheimer ad es…

21.02.2024 | Ricerche

In uno studio durato 5 anni, Sarah Cohen PhD, biologa cellulare della UNC e Ian Windham della Rockef...

Nuova terapia che distrugge i grovigli di tau si dimostra promettente

30.09.2024 | Ricerche

Degli scienziati hanno sviluppato potenziali terapie che rimuovono selettivamente le proteine ​​t...

LipiDiDiet trova effetti ampi e duraturi da intervento nutrizionale all'i…

9.11.2020 | Ricerche

Attualmente non esiste una cura nota per la demenza, e le terapie farmacologiche esisten...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.