Neuroscienziati hanno scoperto le 'regole' che guidano i neuroni a codificare nuove informazioni
Aree dove sono memorizzate le informazioni nel cervello
Ogni giorno, le persone imparano e formano nuovi ricordi. Quando prendi un nuovo hobby, provi una ricetta che ti è stata consigliata o leggi le ultime notizie dal mondo, il tuo cervello memorizza molti di questi ricordi per anni o decenni.
Ma come fa a realizzare questa impresa incredibile? Nella nostra nuova ricerca pubblicata su Science, abbiamo identificato alcune delle 'regole' che il cervello usa per imparare.
Imparare nel cervello
Il cervello umano è costituito da miliardi di cellule nervose. Questi neuroni trasmettono impulsi elettrici che trasportano informazioni, proprio come i computer usano il codice binario per trasportare dati.
Questi impulsi elettrici vengono inviati ad altri neuroni attraverso connessioni tra loro chiamate sinapsi. I singoli neuroni hanno estensioni ramificate chiamate dendriti che possono ricevere migliaia di input elettrici da altre cellule. I dendriti trasmettono questi input al corpo principale (nucleo) del neurone, che integra tutti questi segnali per generare i propri impulsi elettrici.
È l'attività collettiva di questi impulsi elettrici su specifici gruppi di neuroni che forma le rappresentazioni di diverse informazioni ed esperienze all'interno del cervello.
Per decenni, i neuroscienziati hanno pensato che il cervello imparasse cambiando il collegamento dei neuroni tra di loro. Man mano che nuove informazioni ed esperienze alterano il modo in cui i neuroni comunicano tra loro e cambiano i loro modelli di attività collettiva, alcune connessioni sinaptiche sono rafforzate mentre altre sono indebolite. Questo processo di plasticità sinaptica è ciò che produce rappresentazioni di nuove informazioni ed esperienze nel cervello.
Affinché il cervello produca le rappresentazioni corrette durante l'apprendimento, tuttavia, le connessioni sinaptiche appropriate devono subire i giusti cambiamenti, al momento giusto. Le 'regole' usate dal tuo cervello per selezionare quali sinapsi cambiano durante l'apprendimento - che i neuroscienziati definiscono 'problema di assegnazione' (credit assignment problem) - sono rimaste in gran parte poco chiare.
Definizione delle regole
Abbiamo deciso di monitorare l'attività di singole connessioni sinaptiche all'interno del cervello durante l'apprendimento per vedere se potevamo identificare i modelli di attività che determinano quali connessioni sarebbero diventate più forti o più deboli.
Per fare ciò, abbiamo incluso geneticamente dei biosensori nei neuroni di topi che si illuminavano in risposta all'attività sinaptica e neurale. Abbiamo monitorato questa attività in tempo reale mentre i topi stavano apprendendo un compito che consisteva nel premere una leva in una determinata posizione dopo un segnale audio, per ricevere acqua.
Siamo rimasti sorpresi di scoprire che le sinapsi su un neurone non seguono tutte la stessa regola. Ad esempio, gli scienziati spesso pensavano che i neuroni seguissero quelle che sono chiamate 'regole di Hebbian', in cui i neuroni che sparano costantemente insieme, sono cablati insieme. Al contrario, abbiamo visto che le sinapsi in diverse posizioni dei dendriti dello stesso neurone seguivano regole diverse per determinare se le connessioni dovevano diventare più forti o più deboli. Alcune sinapsi aderivano alla tradizionale regola di Hebbian, in cui i neuroni che sparano costantemente insieme rafforzano le loro connessioni. Altre sinapsi hanno fatto qualcosa di diverso e completamente indipendente dall'attività del neurone.
I nostri risultati suggeriscono che i neuroni, per apprendere, usano due diverse serie di regole contemporaneamente in diversi gruppi di sinapsi, piuttosto che una singola regola uniforme, e possono sintonizzare più precisamente i diversi tipi di segnale che ricevono per rappresentare adeguatamente nuove informazioni nel cervello.
In altre parole, seguendo diverse regole nel processo di apprendimento, i neuroni possono fare multitasking (=più compiti allo stesso tempo) ed eseguire più funzioni in parallelo.
Applicazioni future
Questa scoperta fornisce una comprensione più chiara di come cambiano le connessioni tra i neuroni durante l'apprendimento. Dato che la maggior parte dei disturbi cerebrali, comprese le condizioni degenerative e psichiatriche, coinvolgono una qualche forma di malfunzionamento delle sinapsi, ciò ha implicazioni potenzialmente importanti per la salute umana e la società.
Ad esempio, la depressione può svilupparsi da un eccessivo indebolimento delle connessioni sinaptiche all'interno di alcune aree del cervello, che rende più difficile provare piacere. Comprendendo come opera normalmente la plasticità sinaptica, gli scienziati possono capire meglio cosa va storto nella depressione e quindi sviluppare terapie per trattarla in modo più efficace.
Questi risultati possono anche avere implicazioni per l'intelligenza artificiale. Le reti neurali artificiali alla base dell'IA sono ampiamente ispirate dal funzionamento del cervello. Tuttavia, le regole di apprendimento che i ricercatori usano per aggiornare le connessioni all'interno delle reti e formare i modelli sono generalmente uniformi e anche non biologicamente plausibili. La nostra ricerca può fornire approfondimenti su come sviluppare modelli di intelligenza artificiale più realistici biologicamente, che sono più efficienti o con prestazioni migliori, o entrambi.
C'è ancora molta strada da fare prima di poter usare queste informazioni per sviluppare nuove terapie per i disturbi del cervello umano. Sebbene abbiamo scoperto che le connessioni sinaptiche su diversi gruppi di dendriti usano regole di apprendimento diverse, non sappiamo esattamente perché o come. Inoltre, mentre la capacità dei neuroni di usare contemporaneamente più metodi di apprendimento aumenta la loro capacità di codificare informazioni, non è ancora chiaro quali altre proprietà potrebbe dare loro.
Si spera che la ricerca futura risponda a queste domande e approfondisca la nostra comprensione di come impara il cervello.
Fonte: William Wright (post-dottorato in neurobiologia) e Takaki Komiyama (Professore di neurobiologia), Università della California, San Diego
Pubblicato su The Conversation (> English) - Traduzione di Franco Pellizzari.
Riferimenti: WJ Wright et al. Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning. Science, 2025, DOI
Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.
Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.
Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.