Decodificare il tipo di demenza con l'intelligenza artificiale e l'analisi delle onde cerebrali con EEG

eeg dementia graphI sensori EEG registrano l’attività cerebrale (a sinistra), generando segnali di onde cerebrali (al centro) che vengono analizzati dall’AI spiegabile (in alto a destra) e mappati sulle regioni del cervello (in basso a destra) per rilevare e interpretare il tipo e la gravità della demenza in modo non invasivo. Fonte: Vo et al /Biomedical Signal Processing and Control

Il termine demenza indica un gruppo di disturbi che compromettono gradualmente memoria, pensiero e funzionamento quotidiano. Il morbo di Alzheimer (MA), la forma più comune di demenza, colpiva circa 7,2 milioni di americani over-65 anni nel 2025. La demenza frontotemporale (FTD), sebbene più rara, è la seconda causa di demenza a esordio precoce, che spesso insorge tra i 40 e i 60 anni.


Sebbene entrambe le malattie danneggino il cervello, lo fanno in modi distinti. Il MA colpisce principalmente la memoria e la consapevolezza spaziale, mentre la FTD punta le regioni responsabili del comportamento, della personalità e del linguaggio. Poiché i loro sintomi possono sovrapporsi, spesso si arriva a una diagnosi errata. Distinguerle non è solo una sfida scientifica ma una necessità clinica, poiché una diagnosi accurata può influenzare profondamente il trattamento, la cura e la qualità della vita.


Le scansioni MRI e PET sono efficaci per diagnosticare il MA ma sono costose, richiedono molto tempo e attrezzature specializzate. L'elettroencefalografia (EEG) offre un'alternativa portatile, non invasiva ed economica misurando l'attività cerebrale con sensori su varie bande di frequenza. Tuttavia, i segnali sono spesso rumorosi e variano da individuo a individuo, rendendo difficile l’analisi. Anche con le applicazioni di apprendimento automatico dei dati EEG, i risultati sono incoerenti e differenziare il MA dalla FTD rimane difficile.


Per affrontare questo problema, i ricercatori della Florida Atlantic University hanno creato un modello di apprendimento profondo che rileva e valuta MA e FTD. Aumenta la precisione e l'interpretabilità dell'EEG analizzando i modelli di attività cerebrale in base a frequenza e tempo collegati a ciascuna malattia. I risultati dello studio, pubblicati su Biomedical Signal Processing and Control, dicono che le lente onde cerebrali delta sono un importante biomarcatore sia del MA che della FTD, principalmente nelle regioni frontali e centrali del cervello.


Nel MA, l’attività cerebrale era più sconvolta, colpendo anche altre regioni del cervello e bande di frequenza come la beta, indicando un danno cerebrale più esteso. Queste differenze aiutano a spiegare perché il MA è in genere più facile da rilevare rispetto alla FTD. Il modello ha raggiunto una precisione superiore al 90% nel distinguere gli individui con demenza (MA o FTD) dai partecipanti cognitivamente normali. Ha inoltre previsto la gravità della malattia con errori relativi inferiori al 35% per il MA e al 15% per la FTD.


Poiché MA e FTD condividono sintomi e attività cerebrale simili, distinguerli era difficile. Selezionando le caratteristiche, i ricercatori hanno aumentato la specificità del modello – ovvero quanto identificava le persone senza la malattia – dal 26% al 65%. Il loro progetto a due fasi – prima rilevando individui sani, quindi separando il MA dalla FTD – ha raggiunto una precisione dell’84%, classificandosi finora tra i migliori metodi basati sull’EEG.


Il modello unisce reti neurali convoluzionali e LSTM (long short-term memory, memoria a lungo e breve termine) basati sull’attenzione, per rilevare sia il tipo che la gravità della demenza dai dati EEG. Grad-CAM (gradient-weighted class activation mapping) mostra quali segnali cerebrali hanno influenzato il modello, aiutando i medici a comprenderne le decisioni. Questo approccio mostra meglio come si evolve l’attività cerebrale e quali regioni e frequenze guidano la diagnosi, una cosa che gli strumenti tradizionali raramente riescono a cogliere.


“Ciò che rende innovativo il nostro studio è il modo in cui abbiamo usato l’apprendimento profondo per estrarre informazioni sia spaziali che temporali dai segnali EEG”, ha affermato Tuan Vo, primo autore e dottorando del Dipartimento di Ingegneria Elettrica e Informatica della FAU. "In questo modo, possiamo rilevare schemi sottili di onde cerebrali legati al MA e alla FTD che altrimenti passerebbero inosservati. Il nostro modello non si limita a identificare la malattia, ma stima anche quanto è grave, offrendo un quadro più completo delle condizioni di ciascun paziente".


I risultati hanno anche rivelato che il MA tende ad essere più grave, colpendo una gamma più ampia di aree cerebrali e portando a punteggi cognitivi più bassi, mentre gli effetti della FTD sono più localizzati ai lobi frontali e temporali. Queste intuizioni si allineano con precedenti studi di neuroscansione ma aggiungono nuova profondità mostrando come questi modelli appaiono nei dati EEG, uno strumento diagnostico economico e non invasivo.


"I nostri risultati mostrano che il MA corrompe l'attività cerebrale in modo più ampio, specialmente nelle regioni frontale, parietale e temporale, mentre la FTD colpisce principalmente le aree frontali e centrali", ha affermato il coautore Hanqi Zhuang PhD, preside e professore associato del Dipartimento di ingegneria elettrica e informatica della FAU. "Questa differenza spiega perché il MA è spesso più facile da rilevare. Tuttavia, il nostro lavoro mostra anche che un'attenta selezione delle caratteristiche può migliorare significativamente il modo in cui distinguiamo la FTD dal MA".


Nel complesso, lo studio mostra che l'apprendimento profondo può semplificare la diagnosi della demenza combinando il rilevamento e la valutazione della gravità in un unico sistema, riducendo le lunghe valutazioni e fornendo ai medici strumenti in tempo reale per monitorare la progressione della malattia.


“Questo lavoro dimostra come fondendo ingegneria, intelligenza artificiale e neuroscienza possiamo trasformare il modo di affrontare le principali sfide sanitarie”, ha affermato Stella Batalama PhD, preside della Facoltà di Ingegneria e Informatica. "Con milioni di persone colpite dal MA e dalla FTD, scoperte come questa aprono la porta a diagnosi precoce, cure più personalizzate e interventi che possono davvero migliorare la vita".

 

 

 


Fonte: Gisele Galoustian in Florida Atlantic University (> English) - Traduzione di Franco Pellizzari.

Riferimenti: T Vo, [+2], C Bang. Extraction and interpretation of EEG features for diagnosis and severity prediction of Alzheimer’s Disease and Frontotemporal dementia using deep learning. Biom Sign Proc & Control, 2026, DOI

Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 

Notizie da non perdere

Sempre più giovani con Alzheimer e demenza: colpa delle tossine ambientali, me…

6.05.2020 | Denuncia & advocacy

È abbastanza straziante quando le persone anziane sviluppano condizioni di perdita di me...

Livelli di ossigeno nel sangue potrebbero spiegare perché la perdita di memori…

9.06.2021 | Ricerche

Per la prima volta al mondo, scienziati dell'Università del Sussex hanno registrato i li...

Il cammino può invertire l'invecchiamento del cervello?

2.09.2021 | Esperienze & Opinioni

Il cervello è costituito principalmente da due tipi di sostanze: materia grigia e bianca...

Nessuna cura per l'Alzheimer nel corso della mia vita

26.04.2019 | Esperienze & Opinioni

La Biogen ha annunciato di recente che sta abbandonando l'aducanumab, il suo farmaco in ...

Interleuchina3: la molecola di segnalazione che può prevenire l'Alzheimer…

20.07.2021 | Ricerche

Una nuova ricerca su esseri umani e topi ha identificato una particolare molecola di seg...

L'esercizio fisico dà benefici cognitivi ai pazienti di Alzheimer

29.06.2015 | Ricerche

Nel primo studio di questo tipo mai effettuato, dei ricercatori danesi hanno dimostrato che l'ese...

Pressione bassa potrebbe essere uno dei colpevoli della demenza

2.10.2019 | Esperienze & Opinioni

Invecchiando, le persone spesso hanno un declino della funzione cerebrale e spesso si pr...

Accumulo di proteine sulle gocce di grasso implicato nell'Alzheimer ad es…

21.02.2024 | Ricerche

In uno studio durato 5 anni, Sarah Cohen PhD, biologa cellulare della UNC e Ian Windham della Rockef...

Orienteering: un modo per addestrare il cervello e contrastare il declino cogn…

27.01.2023 | Ricerche

Lo sport dell'orienteering (orientamento), che attinge dall'atletica, dalle capacità di ...

Malato di Alzheimer: la casa di cura la paga lo Stato?

25.05.2023 | Normativa

Chi si fa carico delle spese per un malato di Alzheimer ricoverato in una casa di riposo? Scopriamo ...

Sintomi visivi bizzarri potrebbero essere segni rivelatori dell'Alzheimer…

1.02.2024 | Ricerche

Un team di ricercatori internazionali, guidato dall'Università della California di San F...

Perché la tua visione può prevedere la demenza 12 anni prima della diagnosi

24.04.2024 | Ricerche

 

Gli occhi possono rivelare molto sulla salute del nostro cervello: in effetti, i p...

Preoccupazione, gelosia e malumore alzano rischio di Alzheimer per le donne

6.10.2014 | Ricerche

Le donne che sono ansiose, gelose o di cattivo umore e angustiate in me...

Età degli organi biologici prevede il rischio di malattia con decenni di antic…

11.03.2025 | Ricerche

I nostri organi invecchiano a ritmi diversi e un esame del sangue che determina quanto ciascuno è...

Qualità della vita peggiora quando l'Alzheimer è complicato dal cancro

28.04.2023 | Esperienze & Opinioni

Che considerazioni si possono fare per una persona con Alzheimer che riceve anche la diagnosi di can...

Il litio potrebbe spiegare, e trattare, l'Alzheimer?

19.08.2025 | Ricerche

Qual è la prima scintilla che innesca la marcia ruba-memoria del morbo di Alzheimer (MA)...

'Tau, disfunzione sinaptica e lesioni neuroassonali si associano di più c…

26.05.2020 | Ricerche

Il morbo di Alzheimer (MA) comporta il deperimento caratteristico di alcune regioni del ...

Perché le cadute sono così comuni nell'Alzheimer e nelle altre demenze?

4.09.2020 | Esperienze & Opinioni

Le cadute hanno cause mediche o ambientali

Una volta che si considerano tutte le divers...

Maggior parte dei casi di Alzheimer legati a varianti di un singolo gene

21.01.2026 | Ricerche

Secondo una nuova analisi condotta dai ricercatori di University College London (UCL), potenzialm...

Perché è importante la diagnosi precoce di demenza?

31.07.2020 | Esperienze & Opinioni

Vedere problemi di memoria nel tuo caro anziano può essere davvero spaventoso. Magari no...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)