Un nanomateriale di recente sviluppo, che imita il comportamento delle proteine, potrebbe essere uno strumento efficace per il trattamento del morbo di Alzheimer (MA) e di altre malattie neurodegenerative. Il nanomateriale altera l'interazione tra due proteine chiave nelle cellule cerebrali, con un effetto terapeutico potenzialmente potente.
I risultati innovativi, pubblicati di recente su Advanced Materials, sono stati resi possibili da una collaborazione tra scienziati dell'Università del Wisconsin di Madison e ingegneri dei nanomateriali della Northwestern University di Evanston / Illinois.
Il lavoro è incentrato sull'alterazione dell'interazione tra due proteine che si ritiene siano coinvolte nel fissare le basi per malattie come il MA, il Parkinson e la sclerosi laterale amiotrofica (SLA). La prima proteina si chiama Nrf2, un tipo specifico di proteina chiamata 'fattore di trascrizione' che attiva e spegne i geni all'interno delle cellule.
Una delle funzioni importanti della Nrf2 è il suo effetto antiossidante. Mentre diverse malattie neurodegenerative derivano da processi patologici separati, un fattore comune tra loro è l'effetto tossico dello stress ossidativo sui neuroni e su altre cellule nervose. La Nrf2 combatte questo stress tossico nelle cellule cerebrali, aiutando a evitare le malattie.
Jeffrey Johnson, professore della UW-Madison, studia da decenni la Nrf2 come obiettivo promettente per trattare malattie neurodegenerative insieme alla moglie Delinda Johnson, ricercatrice della facoltà di farmacia. Nel 2022, i Johnson e un altro gruppo di collaboratori hanno scoperto che l'aumento dell'attività di Nrf2 in uno specifico tipo di cellula nel cervello, gli astrociti, contribuisce a proteggere i neuroni nei topi modello di MA, portando a una perdita di memoria significativamente inferiore.
Mentre questa ricerca precedente ha suggerito che l'aumento dell'attività di Nrf2 potrebbe costituire la base del trattamento di MA, gli scienziati hanno trovato difficile puntare efficacemente la proteina all'interno del cervello.
"È difficile introdurre farmaci nel cervello, ma è anche molto difficile trovare farmaci che attivano la Nrf2 senza molti effetti indesiderati fuori bersaglio", afferma Jeffrey Johnson.
Ecco quindi il nuovo nanomateriale sintetico chiamato 'polimero simile a proteina' (PLP, protein-like polymer), progettato per legarsi alle proteine come se fosse esso stesso una proteina. Questo imitatore su scala nano è il prodotto di un team guidato da Nathan Gianneschi, professore di chimica della Northwestern e membro dell'International Institute for Nanotechnology della stessa università.
Gianneschi ha progettato diversi PLP per puntare varie proteine. Questo particolare PLP è strutturato per alterare l'interazione tra Nrf2 e un'altra proteina chiamata Keap1. L'interazione tra le due proteine, o percorso, è un obiettivo ben noto per il trattamento di molte condizioni perché la Keap1 controlla essenzialmente quando la Nrf2 risponde, e combatte, lo stress ossidativo. Legate insieme in condizioni non stressate, la Keap1 rilascia Nrf2 per fare il suo lavoro antiossidante quando necessario.
[...] Jeffrey Johnson afferma di essere stato inizialmente alquanto scettico sull'approccio del PLP, data la sua non familiarità con esso e la difficoltà generale di puntare le proteine nelle cellule cerebrali.
"Ma poi uno degli studenti di Nathan è venuto qui con il PLP e lo ha messo sulle nostre cellule, e ha funzionato davvero bene", dice. "Allora ci siamo davvero convinti".
La ricerca conseguente ha mostrato che il PLP di Gianneschi era molto efficace nel legare la Keap1, che ha liberato Nrf2 per accumularsi nel nucleo delle cellule, ampliando la sua funzione antiossidante. E, importante, lo ha fatto senza causare gli effetti indesiderati fuori bersaglio che hanno ostacolato altre strategie volte ad attivare meglio la Nrf2.
Mentre quel lavoro è stato eseguito su cellule in coltura, i Johnson e Gianneschi stanno facendo un ulteriore passo avanti, applicando il loro metodo nei topi modello di malattie neurodegenerative.
Fonte: Will Cushman in University of Wisconsin–Madison (> English) - Traduzione di Franco Pellizzari.
Riferimenti: KP Carrow, [+17]
Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.
Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.
Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.